Acta Crystallographica Section B

Structural

Science
ISSN 0108-7681

Christian Hansson,* Maria Lindqvist \ddagger and Åke Oskarsson

Organic Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
£ Current address: Solid State Analysis, AstraZeneca R\&D Mölndal, SE-431 83 Mölndal, Sweden.

Correspondence e-mail:
christian.hansson@organic.lu.se

[^0]
Cis/trans isomers of $\operatorname{Pt} X_{2} L_{2}$ ($X=$ halogen, $L=$ neutral ligand); the crystal structures of two polymorphs of cis-dichlorobis(dibenzyl sulfido- κ S) platinum(II) in the temperature range $100-295 \mathrm{~K}$

The structures of two polymorphs, one triclinic and one monoclinic, of cis-dichlorobis(dibenzyl sulfido- κS)platinum(II), cis- $\mathrm{PtCl}_{2}\left(\mathrm{Bz}_{2} \mathrm{~S}\right)_{2}$, have been determined at 295, $250,200,150$ and 100 K . In both polymorphs the complex has a structure where platinum(II) coordinates two dibenzyl sulfide molecules and two chloro ligands, forming a complex with pseudo-square-planar coordination geometry. The triclinic polymorph shows disorder at all temperatures. Both polymorphs have a packing arrangement involving centrosymmetric structural dimers. cis- $\mathrm{PtCl}_{2}\left(\mathrm{Bz}_{2} \mathrm{~S}\right)_{2}$ belongs to a group of complexes with the general formula $\operatorname{Pt} X_{2} L_{2}$, where X is a halogen and L is a ligand with a donor atom from groups 14, 15 or 16. The distribution of structural classes among 173 cis$\operatorname{Pt} X_{2} L_{2}$ compounds found in the Cambridge Structural Database (CSD, Version 5.28, November 2006) has been investigated. The predominant structural class [notation according to Belsky \& Zorkii (1977). Acta Cryst. A33, 10041006] among the cis compounds is $P 2_{1} / c, Z=4$ (1) (73 structures, 42%), followed by $P \overline{1}, Z=2$ (1) (33 structures, $19 \%)$. Inversion centres combined with the screw-axis/glide plane are the dominating packing operators (56\%) followed by the inversion centre (21%). The cis and trans influence in cis/trans $-\mathrm{PtCl}_{2} L_{2}$ compounds has been investigated using data from the CSD. The cis influence is small for donor atoms in groups 15 and 16. The trans influence is small for group 16 donor atoms and for nitrogen, but for phosphorus it is significantly greater than the other donor atoms studied.

1. Introduction

The influence of the environment on the shape and dimensions of a particular metal complex can be investigated by studying its geometry in different crystallographic surroundings. This can be achieved in a number of ways, i.e. the study of crystal structures with more than one metal complex in the asymmetric unit (Lövqvist, 1996), charged metal complexes with different counterions (Ericson et al., 1992), different crystalline solvates (Johansson et al., 2000) or different polymorphs (Kapoor et al., 1996). The structure of a toluene solvate of the title compound cis- $\mathrm{PtCl}_{2}\left(\mathrm{Bz}_{2} \mathrm{~S}\right)_{2}$, where $\mathrm{Bz}_{2} \mathrm{~S}$ is dibenzyl sulfide, is known (Braunmühl et al., 1998) and here we report the structure of two polymorphs crystallizing in $P \overline{1}$ and $C 2 / c$, respectively, with no solvate molecules. Differences in molecular geometry are analysed by root-mean-square (r.m.s.) calculations and half-normal probability plots (Albertsson \& Schultheiss, 1974; De Camp, 1973; Abrahams \& Keve, 1971).

The two polymorphs of cis- $\mathrm{PtCl}_{2}\left(\mathrm{Bz}_{2} \mathrm{~S}\right)_{2}$ make it possible to study two different packing arrangements of the same mole-

Received 3 October 2007
Accepted 24 February 2008
cule. Kitaigorodsky (1973) categorized space groups into closest-packed, limiting close-packed, permissible and impossible. The two space groups observed for the polymorphs belong to closest-packed ($P \overline{1}$) and permissible $(C 2 / c)$, and Kitaigorodsky proposed that molecules with C_{1} symmetry could be close-packed in $P \overline{1}$, but not in $C 2 / c$. The latter space group requires C_{i} symmetry of the molecule for close packing. Wilson (1993) introduced the concept of structural dimers, i.e. two molecules related by point-group symmetry that form a dimer. This redefinition of the molecular species allows for close packing in $C 2 / c$. The packing of the two polymorphs as well as the solvate has been analysed within the framework of structural dimers and the structural motifs forming the dimers are identified.

The structural class concept (Belsky et al., 1995; Belsky \& Zorkii, 1977) carries information about point-group symmetry, i.e. it is a suitable tool for describing the interplay between the molecular point-group symmetry and the crystal-structure symmetry (space groups) determined by the packing arrangement and it may thus answer questions such as:
(i) What point-group symmetry is retained?
(ii) What point group symmetry is avoided?
(iii) Which special positions are unoccupied in the solid state?
However, such common features will be of most interest for molecules that have similar crystallochemical nature, such as cis/trans $-\operatorname{Pt} X_{2} L_{2}$, where X is a halogen and L is a ligand with a donor atom from groups 14,15 or 16 . The number of structures of cis/trans- $\operatorname{Pt} X_{2} L_{2}$ in the Cambridge Structural Database (CSD, Version 5.28, November 2006; Allen, 2002) is approximately 300 and all have been checked manually, thus not using the relational database CSDSymmetry (Yao et al., 2002), which is convenient for larger datasets. trans- $\mathrm{Pt} X_{2} L_{2}$ may adopt the point groups $C_{1}, C_{s}, C_{2}, C_{2 v}, C_{i}$ and $C_{2 h}$, while compounds cis- $\mathrm{Pt} X_{2} L_{2}$ such as cis $-\mathrm{PtCl}_{2}\left(\mathrm{Bz}_{2} \mathrm{~S}\right)_{2}$ are consistent with C_{1}, C_{s}, C_{2} and $C_{2 v}$ point groups. The most frequently observed molecular point group for complexes trans- $\mathrm{Pt} X_{2} L_{2}$ is $C_{i}(78 \%)$ followed by $C_{1}(16 \%)$ with no representatives for C_{s} or $C_{2 v}$ (Hansson et al., 2006). Here we report the frequency of the molecular point-group symmetry, avoided point groups as well as unoccupied special positions, i.e. the crystal-packing operators, as documented in the CSD for complexes cis$\operatorname{Pt} X_{2} L_{2}$.

Pidcock et al. (1966) introduced the concept of trans-influence as the ability of a ligand to weaken the $M-L$ bond and thereby lengthen the $M-L$ distance in the trans position to the ligand. Zumdahl \& Drago (1968) noticed that a σ-bonded ligand influences not only the $M-L$ bond in the trans position, but also bonds in cis positions. They proposed the name cis influence for this phenomenon. Complexes cis/trans $-\mathrm{PtCl}_{2} L_{2}$, as documented in the CSD, give an opportunity to study how the length of a $\mathrm{Pt}-\mathrm{Cl}$ bond can be tuned by both the nature of the ligand L and its position relative to Cl .

The analyses of the structure of the $P \overline{1}$ polymorph showed some abnormal displacement parameters at room temperature and it was decided to further study both structures at 250,200 , 150 and 100 K .

2. Experimental

2.1. Synthesis

Dibenzyl sulfide, $\mathrm{Bz}_{2} \mathrm{~S}(0.208 \mathrm{~g}, 0.971 \mathrm{mmol})$, was dissolved in 15 ml of ethanol and added to a solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.152 \mathrm{~g}$, 0.366 mmol) in 20 ml of water. The product started to precipitate immediately. After 22 h of stirring, the green-yellow precipitant was filtered off and washed with $2 \times 5 \mathrm{ml}$ of water and 5 ml of ethanol. Dissolution of the precipitant in nitromethane:ethanol (1:1 in volume) afforded crystals suitable for X-ray diffraction experiments.

The triclinic polymorph forms yellow prismatic crystals, while the monoclinic crystals are pale green-yellow plates.

2.2. X-ray measurements and structure determination

Intensity data on the $P \overline{1}$ polymorph was first collected on a Siemens Bruker SMART CCD diffractometer at 295 K. The structure analysis showed some dubious $U_{\text {eq }}$-value relationships and a new dataset was collected on an Oxford Diffraction Xcalibur3 diffractometer (Oxford Diffraction, 2005) with exposing time 20 s and frame width 0.75°. There were 552 frames which were collected with one reference frame every 50th frame. No decay was observed. Completeness of 97.0% was accomplished out to $\theta=25.2^{\circ}$. The structure analysis resulted in the same dubious $U_{\text {eq }}$ value relationships as before, and it was concluded that the observed $U_{\text {eq }}$ values were not a result of artefacts in the intensity data collection but probably the result of disorder. Therefore, datasets were collected at $100,150,200$ and 250 K using a cold nitrogen gas flow (Oxford Instruments Cryojet ES75) with the Oxford Diffraction Xcalibur3 diffractometer. The same parameters as above were used. Even at 100 K some $U_{\text {eq }}$ values are still abnormal. Intensity datasets on the $C 2 / c$ polymorph were collected on an Oxford Diffraction Xcalibur3 at the same temperatures and with the same parameters as for the $P \overline{1}$ polymorph, except for the exposure time which was 10 s . Completeness of 99.5% was accomplished out to $\theta=30.2^{\circ}$ at 295 K .

The intensities were integrated and merged, and the effects of absorption were corrected using the numerical method in CrysAlis, Version 1.171.29 (Oxford Diffraction, 2006). Patterson and difference-Fourier methods, and refinement by

Table 1
Experimental details.

	295 K	250 K	200 K	150 K	100 K
cis- $\mathrm{PtCl}_{2}\left(\mathrm{Bz}_{2} \mathrm{~S}\right)_{2}$, triclinic polymorph					
Crystal data					
Chemical formula	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{PtS}_{2}$				
M_{r}	694.61	694.61	694.61	694.61	694.61
Cell setting, space group	Triclinic, $P \overline{1}$				
Temperature (K)	295 (1)	250 (1)	200 (1)	150 (1)	100 (1)
a, b, c (A)	$\begin{aligned} & 8.3661(5), 12.2534(6), \\ & 15.8692(8) \end{aligned}$	$\begin{aligned} & 8.3411(7), 12.2228(11), \\ & 15.8547(19) \end{aligned}$	$\begin{aligned} & 8.2930(5), 12.1730(8), \\ & 15.7892(14) \end{aligned}$	$\begin{aligned} & 8.2603(4), 12.1587(7), \\ & 15.7688(10) \end{aligned}$	$\begin{aligned} & 8.2487(3), 12.1346(6), \\ & 15.7583(10) \end{aligned}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$\begin{aligned} & 69.052(5), 89.258(4), \\ & 71.378(5) \end{aligned}$	$\begin{aligned} & 69.022(10), 89.222(8), \\ & 71.433(8) \end{aligned}$	$\begin{aligned} & 68.837(7), 89.261(6), \\ & 71.456(6) \end{aligned}$	$\begin{aligned} & 68.644(5), 89.262(5), \\ & 71.368(5) \end{aligned}$	$\begin{aligned} & 68.528(6), 89.499(4), \\ & 71.565(4) \end{aligned}$
$V\left(\AA^{3}\right)$	1430.29 (15)	1421.5 (3)	1399.9 (2)	1388.04 (14)	1382.26 (14)
Z	2	2	2	2	,
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.613	1.623	1.648	1.662	1.669
Radiation type	Mo $K \alpha$	Mo $K \alpha$	Mo K α	Mo K α	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	5.25	5.29	5.37	5.41	5.44
Crystal form, colour	Prism, yellow				
Crystal size (mm)	$0.28 \times 0.19 \times 0.13$				
Data collection					
Diffractometer	Oxford Diffraction XCALIBUR3	Oxford Diffraction XCALIBUR3	Oxford Diffraction XCALIBUR3	Oxford Diffraction XCALIBUR3	Oxford Diffraction XCALIBUR3
Data collection method	ω scans				
Absorption correction	Numerical	Numerical	Numerical	Numerical	Numerical
$T_{\text {min }}$	0.304	0.302	0.301	0.299	0.297
$T_{\text {max }}$	0.569	0.566	0.562	0.560	0.557
No. of measured, independent and observed reflections	14 109, 9122, 7325	$12940,8515,6931$	$13148,8659,7523$	13 680, 8761, 7902	13 506, 8697, 7959
Criterion for observed reflections	$I>2 \sigma(I)$				
$R_{\text {int }}$	0.024	0.043	0.045	0.017	0.025
$\theta_{\text {max }}\left({ }^{\circ}\right)$	32.7	32.6	32.7	32.7	32.8
Refinement					
Refinement on	F^{2}	F^{2}	F^{2}	F^{2}	F^{2}
$\begin{aligned} & R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), \end{aligned}$	0.036, 0.102, 0.99	0.035, 0.089, 1.01	0.034, 0.088, 1.02	0.020, 0.052, 0.98	0.021, 0.055, 1.03
No. of reflections	9122	8515	8659	8761	8697
No. of parameters	360	372	318	336	396
H -atom treatment	Constrained to parent site				
Weighting scheme	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ & \left.(0.0642 P)^{2}\right], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ & \left.(0.0482 P)^{2}\right], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ & \left.(0.0552 P)^{2}\right], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ & \left.\quad(0.0342 P)^{2}\right], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ & \left.(0.0342 P)^{2}\right], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$
$(\Delta / \sigma)_{\max }$	0.010	0.008	0.010	0.014	0.012
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	2.23, -1.88	$2.15,-1.52$	2.83, -1.88	2.13, -0.85	$2.42,-1.05$
	295 K	250 K	200 K	150 K	100 K
cis- $\mathrm{PtCl}_{2}\left(\mathrm{Bz}_{2} \mathrm{~S}\right)_{2}$, monoclinic polymorph					
Chemical formula	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{PtS}_{2}$				
M_{r} Cell setting, space group	Monoclinic, C2/c				
Temperature (K)	295 (1)	250 (1)	200 (1)	150 (1)	100 (1)
$a, b, c(\mathrm{~A})$	$\begin{aligned} & 28.6839(11), 15.5752(6), \\ & 12.7019(5) \end{aligned}$	$\begin{aligned} & 28.5503(10), 15.5016(6), \\ & 12.6508(5) \end{aligned}$	$\begin{aligned} & 28.4657(9), 15.4653(6), \\ & 12.6114(5) \end{aligned}$	$\begin{aligned} & 28.3708(9), 15.4372(6), \\ & 12.5812(5) \end{aligned}$	$\begin{aligned} & 28.3057(8), 15.3972(6), \\ & 12.5488(5) \end{aligned}$
$\beta\left(^{\circ}\right. \text {) }$	102.584 (3)	102.560 (3)	102.499 (3)	102.432 (3)	102.259 (3)
$V\left(\AA^{3}\right)$	5538.3 (4)	5464.9 (4)	5420.3 (4)	5380.9 (3)	5344.4 (3)
Z	8	8	8	8	8
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.666	1.688	1.702	1.715	1.727
Radiation type	Mo K α	Mo K α	Mo K α	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	5.43	5.50	5.54	5.58	5.62
Crystal form, colour	Plate, pale yellow				
Crystal size (mm)	$0.30 \times 0.19 \times 0.10$				
Data collection					
Diffractometer	Oxford Diffraction XCALIBUR3				

Table 1 (continued)

	295 K	250 K	200 K	150 K	100 K
Data collection method	ω scans				
Absorption correction	Numerical	Numerical	Numerical	Numerical	Numerical
$T_{\text {min }}$	0.297	0.297	0.298	0.296	0.285
$T_{\text {max }}$	0.581	0.579	0.578	0.573	0.572
No. of measured, independent and observed reflections	23 942, 9449, 6667	24 554, 9148, 6689	24 317, 9100, 7099	24 840, 9119, 7490	23 700, 9026, 7633
Criterion for observed reflections	$I>2 \sigma(I)$				
$R_{\text {int }}$	0.060	0.036	0.038	0.031	0.041
$\theta_{\text {max }}\left({ }^{\circ}\right)$	32.8	32.7	32.7	32.8	32.7
Refinement					
Refinement on	F^{2}	F^{2}	F^{2}	F^{2}	F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.046, 0.126, 1.00	0.031, 0.079, 0.99	0.030, 0.078, 1.01	0.026, 0.065, 1.06	0.032, 0.081, 1.01
No. of reflections	9449	9148	9100	9119	9026
No. of parameters	298	298	298	298	298
H -atom treatment	Constrained to parent site				
Weighting scheme	$\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ \left.(0.0707 P)^{2}\right], \text { where } \\ P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ & \left.\quad(0.0448 P)^{2}\right], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ \left.(0.0468 P)^{2}\right], \text { where } \\ P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ & \left.(0.0385 P)^{2}\right], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ & \left.\quad(0.0556 P)^{2}\right], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$
$(\Delta / \sigma)_{\text {max }}$	0.002	0.003	0.004	0.005	0.003
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	2.15, -2.34	2.00, -1.54	2.37, -1.39	2.06, -1.61	2.41, -2.25

Computer programs used: CrysAlis, Version 1.171 .29 (Oxford Diffraction, 2006), SHELXTL5.1 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), MERCURY (Bruno et al., 2002), enCIFer Version 1.1 (CSD; Allen, 2002).
full-matrix least-squares calculations were used in the structure determinations, using SHELXTL5.1 (Sheldrick, 2008).

The abnormal $U_{\text {eq }}$ values in polymorph $P \overline{1}$ are caused by a static disorder in two of the phenyl rings. Positional para-

Figure 1
The numbering scheme for the $P \overline{1}$ polymorph at 100 K . The displacement ellipsoids are drawn at 30% probability.
meters of the dominating orientations of the respective disordered phenyl rings were refined isotropically, and then treated as rigid bodies. The positions of the second conformations were found in the difference-Fourier maps and refined isotropically as rigid bodies. The rigid-body restraints were then removed, and the phenyl rings were refined anisotropically. Soft restraints (SHELXTL commands SAME and SIMU) were applied to atoms showing peculiar $U_{\text {eq }}$ values. Some C atoms still showed abnormal $U_{\text {eq }}$ values and the $U_{\text {eq }}$ values of these C atoms had to be fixed to the corresponding values of neighbouring atoms. The dataset collected at 295 K did not allow the removal of the rigid-body constraint, and the C atoms were anisotropically refined as members of a regular hexagon.

H -atom positions were calculated as riding on the adjacent C atom constrained to parent sites (methylene group $\mathrm{C}-\mathrm{H}$ distance $0.97 \AA$, aromatic $\mathrm{C}-\mathrm{H}$ distance $0.93 \AA$), while non- H atoms were refined anisotropically. Figures of the complexes and their packing arrangements were made using the software DIAMOND (Brandenburg, 2000) and MERCURY (Bruno et al., 2002).

Experimental details and crystal data are shown in Table 1.

3. Result and discussion

3.1. Disorder in polymorph $P \overline{1}$

For the triclinic polymorph the ratio between $U_{\mathrm{eq}}(\max)$ and $U_{\text {eq }}(\min)$ for the C atoms was large, ranging from 4.53 to 4.73 , in the temperature interval $150-295 \mathrm{~K}$ and significantly larger, 5.78 , at 100 K . A closer examination reveals that $U_{\text {eq }}$ values for the C atoms in the phenyl ring C17-C22 were appreciably

Table 2
Selected bond distances and angles.
Cg is the centroid of the phenyl ring ($\mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10$) and db is the center of the $\mathrm{C} 9-\mathrm{C} 10$ bond (atomic numbering follows that used in the non-solvato complexes).

	Triclinic (295 K)	Triclinic (100 K)	Monoclinic (295 K)	Monoclinic (100 K)	Toluene solvate (296 K)
$\mathrm{Pt} 1-\mathrm{Cl} 1$	2.3133 (10)	2.3179 (6)	2.3097 (12)	2.3080 (6)	2.310 (2)
$\mathrm{Pt} 1-\mathrm{Cl} 2$	2.3121 (9)	2.3140 (6)	2.3186 (12)	2.3216 (6)	2.312 (2)
Pt1-S1	2.2746 (8)	2.2730 (5)	2.2785 (10)	2.2733 (6)	2.267 (2)
$\mathrm{Pt} 1-\mathrm{S} 2$	2.2777 (10)	2.2718 (6)	2.2768 (12)	2.2753 (6)	2.272 (1)
$\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{Cl} 2$	89.60 (4)	89.89 (2)	90.12 (5)	90.16 (2)	89.92 (7)
$\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{S} 1$	92.06 (4)	92.06 (2)	90.63 (4)	90.42 (2)	91.85 (7)
$\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{S} 2$	174.15 (4)	173.67 (2)	174.49 (5)	173.90 (2)	177.15 (5)
$\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{S} 2$	91.26 (4)	91.02 (2)	91.76 (4)	91.54 (2)	91.58 (7)
$\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{S} 1$	178.28 (4)	178.01 (2)	178.46 (5)	178.73 (2)	177.33 (6)
$\mathrm{S} 1-\mathrm{Pt} 1-\mathrm{S} 2$	87.13 (3)	87.07 (2)	87.37 (4)	87.77 (2)	86.64 (5)
$\mathrm{Pt} 1-\mathrm{S} 1-\mathrm{C} 1$	106.21 (14)	105.68 (8)	104.54 (15)	104.19 (9)	105.0 (2)
$\mathrm{Pt} 1-\mathrm{S} 1-\mathrm{C} 2$	109.55 (13)	109.59 (8)	109.88 (16)	109.95 (9)	112.1 (2)
$\mathrm{Pt} 1-\mathrm{S} 2-\mathrm{C} 3$	101.19 (16)	101.18 (9)	101.29 (18)	100.75 (9)	104.95 (18)
$\mathrm{Pt} 1-\mathrm{S} 2-\mathrm{C} 4$	110.75 (16)	111.26 (9)	111.4 (2)	110.71 (10)	109.45 (2)
C1-S1-C2	99.90 (19)	99.89 (11)	98.2 (2)	98.68 (12)	98.3 (3)
$\mathrm{C} 3-\mathrm{S} 2-\mathrm{C} 4$	100.6 (2)	100.45 (12)	100.7 (3)	100.54 (13)	100.3 (3)
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}-\mathrm{Cg}$	2.95	2.96	2.92	2.88	2.93
$\mathrm{C} 3-\mathrm{H} 3 B-\mathrm{db}$	2.77	2.79	2.88	2.84	2.93

larger than for the others, indicating a static disorder for this ring since the values do not improve with cooling of the crystal. Also, C atoms in the ring C5-C10 showed abnormal $U_{\text {eq }}$ values. The substantially larger ratio $U_{\text {eq }}(\max) / U_{\text {eq }}(\min)$ for the structure at 100 K compared with the other temperatures is further support for this idea and the disorder was resolved at 100 K , with the occupancy factors 65 and 35%, respectively, for the ring C17-C22, and 56 and 44%, respectively, for the ring C5-C10 (Fig. 1).

3.2. Intramolecular geometry

The two polymorphs of the title compound cis- $\mathrm{PtCl}_{2}\left(\mathrm{Bz}_{2} \mathrm{~S}\right)_{2}$ have a very similar molecular geometry with the platinum(II) being four-coordinated with two dibenzyl sulfide molecules and two chlorines in cis positions forming a pseudo-squareplanar geometry at the metal centre (Figs. 1 and 2). The methylene C atoms in each sulfide ligand are staggered with respect to the coordination plane. Selected geometric parameters for both polymorphs at different temperatures as well as the toluene solvate are given in Table 2. The angles around platinum(II) are similar in all three compounds and in the same range as in the related compounds cis $-\mathrm{PtCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{~S}\right)_{2}$ (Johansson et al., 2001), cis- $\mathrm{PtCl}_{2}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{2}$ (Horn et al., 1990) and cis- PtCl_{2} (1,4-thioxane) $)_{2}$ (Bugarcic et al., 1993).

The corresponding bond distances given in Table 2 are not significantly different. This was further analysed by halfnormal probability plots using non-H bond distances (excluding distances involved in the disordered phenyl rings). Observed ranked values of δm_{i} calculated using (1) are plotted versus the values α_{i} expected for a half-normal distribution of
errors (International Tables of Crystallography, Vol. IV, 1974). The quantities $d(1)_{i}$ and $d(2)_{i}$ are interatomic distances i for two different structures (1) and (2) with s.u.s $\sigma d(1)_{i}$ and $\sigma d(2)_{i}$, respectively. Representative results are given in Figs. 3(a)-(e).

Figure 2
The numbering scheme for the $C 2 / c$ polymorph at 100 K . The displacement ellipsoids are drawn at 30% probability.

Table 3
Slopes, intercepts and correlation coefficients for the half-normal probability plots, Figs. 3(a)-(e).

Plot	Slope	Intercept	Correlation coefficient
Fig. 3(a)	1.93	-0.0792	0.993
Fig. 3(b)	1.70	-0.156	0.965
Fig. 3(c)	2.15	-0.355	0.980
Fig. 3(d)	2.09	-0.0531	0.982
Fig. 3(e)	2.05	0.0866	0.988

The slopes and the intercepts indicate an underestimation of the s.u.s by, on average, a factor of two.

$$
\begin{equation*}
\delta m_{i}=\left|d(1)_{i}-d(2)_{i}\right| /\left[\left(\sigma^{2} d(1)_{i}+\sigma^{2} d(2)_{i}\right)\right]^{1 / 2} \tag{1}
\end{equation*}
$$

The intercepts are close to 0 in the plots in Figs. 3(a), (d) and (e), indicating no significant geometrical differences between the two polymorphs, and no significant changes in bond distances occur when cooling the complexes to 100 K . When comparing the toluene solvate with the triclinic (Fig. 3b) and monoclinic (Fig. $3 c$) polymorph, the intercept of the corresponding plot indicates small systematic differences (experimental or chemical in origin) between the polymorphs and the toluene solvate. Values of the slopes and the intercepts as well
as correlation coefficients for the five plots are found in Table 3.

The conformation was analysed by an r.m.s. overlay of the complexes (Fig. 4). The best fit is observed for the polymorph $P \overline{1}$ and the toluene solvate, which have similar conformations but differ from the $C 2 / c$ polymorph. The unresolved phenyl rings $\mathrm{C} 5-\mathrm{C} 10$ and $\mathrm{C} 17-\mathrm{C} 22$ in $P \overline{1}$ were used, i.e. an averaged structure of the disordered phenyl rings was analysed. In conclusion, the main difference is in the orientation of the phenyl ring C11-C16 in C2/c compared with the other two complexes. However, there is an intramolecular $\mathrm{C}-\mathrm{H}---\pi$ (arene) interaction present in all complexes that is described by the distance $\mathrm{H} 3 B$-centroid (phenyl ring; Table 2). This is a strong indication that the $\mathrm{C}-\mathrm{H}---\pi$ (arene) interaction determines the conformation of this part of the complex and dominates over a conformation with one $\mathrm{C}-\mathrm{S}$ eclipsed with the coordination plane, as observed for cis$\mathrm{PtCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{~S}\right)_{2}$ (Johansson et al., 2001), cis- $\mathrm{PtCl}_{2}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{2}$ (Horn et al., 1990) and cis- $\mathrm{PtCl}_{2}(1,4 \text {-thioxane) })_{2}$ (Bugarcic et al., 1993), as well as the different types of intermolecular interactions responsible for the packing arrangements. It is interesting to note that although the whole phenyl ring may act as a π acceptor it is actually the centre of the $\mathrm{C} 9-\mathrm{C} 10$ bond in the ring that is closest to the interacting $\mathrm{H} 3 B$ atom (Table 2).

Figure 3
Half-normal probability plots (non-H bond lengths used) comparing (a) the $P \overline{1}$ polymorph and the $C 2 / c$ polymorph at $295 \mathrm{~K},(b)$ the $P \overline{1}$ polymorph and the toluene solvate, (c) the $C 2 / c$ polymorph and the toluene solvate, (d) the $P 1$ polymorph at 295 and 100 K , and (e) the $C 2 / c$ polymorph at 295 and 100 K .

Table 4
Contacts/interactions as well as unoccupied spaces for the centres of inversion.

Notation	Position	Contacts/interactions
$P \overline{1}$ polymorph		
(1a)	000	Empty void
(1b)	$00 \frac{1}{2}$	π (arene)--- π (arene)
(1c)	$0 \frac{1}{2} 0$	C-H---S
(1d)	$\frac{1}{2} 00$	$\mathrm{C}-\mathrm{H}---\mathrm{H}-\mathrm{C}, \mathrm{C}-\mathrm{H}--\mathrm{Cl}$
(1e)	$\frac{1}{2} \frac{1}{2} 0$	π (arene)--- π (arene)
(1f)	$\frac{1}{2} 0 \frac{1}{2}$	$\mathrm{C}-\mathrm{H}--\mathrm{H}-\mathrm{C}, \mathrm{C}-\mathrm{H}--\mathrm{Cl}$
(1g)	$0 \frac{1}{2} \frac{1}{2}$	Empty void
(1h)	$\frac{1}{2} \frac{1}{2} \frac{1}{2}$	Empty void
C2/c polymorph		
(4a)	000	π (arene) $-\cdots \pi$ (arene), $\mathrm{C}-\mathrm{H}--\mathrm{C}$ (arene)
(4b)	$0 \frac{1}{2} 0$	π (arene)--- π (arene)
(4c)	$\frac{1}{4} \frac{1}{4} \frac{1}{2}$	$\mathrm{C}-\mathrm{H}-\cdots \pi$ (arene), $\mathrm{C}-\mathrm{H}-\mathrm{-}^{-S}$
(4d)	$\frac{1}{4} \frac{1}{4} 0$	$\mathrm{C}-\mathrm{H}-\mathrm{-} \mathrm{Cl}$
Toluene solvate ($P 2_{1} / n$)		
(2a)	000	π (arene)--- π (arene), $\mathrm{C}-\mathrm{H}---\mathrm{C}$ (arene)
(2b)	$\frac{1}{2} 00$	C-H---H-C
(2c)	$00 \frac{1}{2}$	$\mathrm{C}-\mathrm{H}--\mathrm{H}-\mathrm{C}$
(2c)	$0 \frac{1}{2} 0$	Void containing toluene solvate

3.3. Structural dimers of cis-Pt $X_{2} \boldsymbol{L}_{\mathbf{2}}$

The $C 2 / c$ polymorph occupies space more effectively than the $P \overline{1}$ polymorph, as shown by the densities $\left(1.61 \mathrm{~g} \mathrm{~cm}^{-3}\right.$ for the $P \overline{1}$ polymorph and $1.67 \mathrm{~g} \mathrm{~cm}^{-3}$ for the $C 2 / c$ polymorph at 295 K), and by the Kitaigorodsky packing index (calculated using the PLATON software; Spek, 2003), which is 0.635 for the triclinic and 0.657 for the monoclinic polymorph at 295 K . This is further supported by the volume thermal expansion $\beta=$ $(\mathrm{d} \ln V) / \mathrm{d} T$, which is 1.88×10^{-4} and $1.76 \times 10^{-4} \mathrm{~K}^{-1}$ for the $P \overline{1}$ and $C 2 / c$ polymorph, respectively. This is not to be expected from Kitaigorodsky's (1973) categorization of space groups, where molecules with C_{1} symmetry could be closepacked in $P \overline{1}$, but not in $C 2 / c$. However, the concept of a 'structural dimer' allows for close packing in $C 2 / c$ (Wilson, 1993). The polymorph in $P \overline{1}$ forms eight crystallographically different dimers with C_{i} symmetry, and the polymorph in $C 2 / c$ forms four crystallographically different dimers with C_{i} symmetry and one with C_{2} symmetry. The solvate (Braunmühl

Figure 4
An r.m.s. overlay plot of the two polymorphs $P \overline{1}$ (red) and $C 2 / c$ (green) and the toluene solvate (blue).
et al., 1998) forms four crystallographically different dimers with C_{i} symmetry.

The closest approaches across the inversion centres in the two polymorphs and in the toluene solvate are summarized in Table 4. Phenyl rings located close to each other are common in all three structures with distances $\mathrm{Cg}---\mathrm{Cg}(\mathrm{Cg}$ being the centre of a phenyl ring) ranging from 3.9 to $6.4 \AA$ and the shortest intermolecular C---C distances in the interval 3.4$5.4 \AA$. However, if the position at 000 in the triclinic polymorph is excluded the intervals will be $3.9-5.0(\mathrm{Cg}--\mathrm{Cg})$ and 3.4-3.8 \AA (C---C), which may indicate $\pi($ arene $)---\pi($ arene $)$ interactions (Hunter \& Sanders, 1990; Janiak, 2000). C-H--π (arene) interactions indicated in Table 4 have $\mathrm{H}---\mathrm{Cg}$ or $\mathrm{H}--\mathrm{C}$ distances in the range $2.7-3.1 \AA$. One of the $\mathrm{C}-\mathrm{H}$ bonds involved in the interactions around $\frac{1}{4} \frac{1}{4} \frac{1}{2}$ in the monoclinic polymorph is orientated perpendicular to the neighbouring phenyl ring forming an edge-to-face interaction, a socalled T-stacking (Fig. 5). Soft $\mathrm{C}-\mathrm{H}--\mathrm{H}-\mathrm{C}$ contacts are observed in the triclinic polymorph and in the toluene solvate, with $\mathrm{C}-\mathrm{H}---\mathrm{H}-\mathrm{C}$ distances in the range $2.50-3.20 \AA$. $\mathrm{C}-$ $\mathrm{H}---\mathrm{Cl}$ interactions are present in both polymorphs, but not between the dimers of the toluene solvate, with distances in the range 2.94-3.15 \AA, i.e. within the range 2.78-3.20 \AA found in the related structure cis $-\mathrm{PtCl}_{2}\left(\mathrm{Et}_{2} \mathrm{~S}\right)_{2}$ (Hansson, 2007). C-$\mathrm{H}--\mathrm{S}$ interactions are seen in both polymorphs with the distances 3.15 and $3.17 \AA$, i.e. these are somewhat longer than reported for dibenzyl sulfide (Hansson, 2006).

The triclinic polymorph has channels along the a axis (Fig. $6)$. Voids are formed around $0 \frac{1}{2} \frac{1}{2}$ and $\frac{1}{2} \frac{1}{2} \frac{1}{2}$, making the polymorph a rather porous material with accessible voids of $52 \AA^{3}$ per unit cell at 295 K and $45 \AA^{3}$ at 100 K . In the solvate the non-centrosymmetric toluene molecule occupies an inversion centre and thus becomes disordered.

A non-centrosymmetric dimer is formed around the twofold rotation axis in the monoclinic polymorph with the shortest intermolecular distance $2.67 \AA$ between H 9 and H 10 .

Figure 5
The dimeric unit around the inversion centre $\frac{1}{4} \frac{1}{4} \frac{1}{2}$, held together inter alia by $\mathrm{C}-\mathrm{H}--\pi($ arene $)$ interactions (T stacking) in the monoclinic polymorph.

3.4. Distribution of cis/trans- $\mathrm{Pt}_{\mathbf{2}} \boldsymbol{L}_{\mathbf{2}}$ into point groups

A literature survey for compounds of the type cis- $\mathrm{Pt} X_{2} L_{2}$, where X is a halogen and L is a ligand with a donor atom from groups 14,15 or 16 , has been made using the CSD (Allen, 2002; Version 5.28, November 2006) with the ConQuest software (Bruno et al., 2002) and resulted in 173 compounds. Simple solvates were included, but not structures with no reported coordinates, obscure connectivity or severe disorder.

Oskarsson (2007) has suggested an extended structural class notation for describing crystal structures which give both intramolecular (point-group) symmetry according to the structural class notation (Belsky et al., 1995; Belsky \& Zorkii, 1977) and intermolecular (true crystal packing) operators in the following way: a semicolon shows the end of the structural class and then the unoccupied special positions are given within brackets. No unoccupied special positions are denoted 0 . Thus, an obvious notation would be $P 2_{1} / c, Z=2(-1)$; $\left[\left(-1^{3}\right)\right], P 2_{1} / c, Z=4(1) ;\left[\left(-1^{4}\right)\right], P 2_{1} / c, Z=4\left(-1^{2}\right) ;\left[\left(-1^{2}\right)\right]$, $P 2_{1} / c, Z=6(-1,1) ;\left[\left(-1^{3}\right)\right]$ etc. The most common extended structural class for cis- $\operatorname{Pt} X_{2} L_{2}$ is $P 2_{1} / c, Z=4(1) ;\left[\left(-1^{4}\right)\right](73$ compounds, 42%), followed by $P \overline{1}, Z=2$ (1); $\left[\left(-1^{8}\right)\right]$ (33 compounds, 19\%) and $P 2_{1} 2_{1} 2_{1}, Z=4$ (1); [0] (eight compounds, 5%; see deposited material ${ }^{\mathbf{1}}$). The extended structural class distribution (deposited material) shows that the point group C_{1} dominates strongly (88%) followed by C_{2} (10%). Of the other two possibilities, C_{s} is represented by one complex, while there is none for $C_{2 v}$. Pidcock et al. (2003) have shown that C_{1} is the dominating point group among structures in general in the CSD (71%) followed by $C_{i}(8 \%)$. It is interesting to note that $C_{2 v}$ is not represented for trans $-\mathrm{Pt} X_{2} L_{2}$ either and this class of complex is dominated by $C_{i}(78 \%)$ followed by $C_{1}(16 \%), C_{2}(4 \%)$ and $C_{2 h}(2 \%)$ (Hansson et al., 2006). $C_{2 v}$ requires the crystallographic point group mm2, which thus seems to be unfavourable for close packing. DFT calculations on cis- $\mathrm{PtCl}_{2}(\mathrm{dms})_{2}$ in the gas phase show that the $C_{2 v}$ conformation is the one with the lowest energy and the observed geometry in the crystal structure (Horn et al., 1990) is about $14 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above this minimum (Oskarsson, 2008). The intermolecular interactions thus compensate for the increase in conformational energy. The space group $C 2 / c$ has 16 and 11 representatives for the cis and trans compounds, respectively. Besides the general positions, there are four special positions on the inversion centres and one special position on the twofold axis, which may be used to discriminate between the preference of molecular symmetris C_{2} or C_{i} (Wilson, 1993). Of the 16 cis compounds in $C 2 / c$, which cannot have molecular symmetry C_{i}, seven complexes have molecular symmetry C_{1}, nine have molecular symmetry C_{2} and two compounds with $Z^{\prime}=2$ have one molecule with C_{1} and one with C_{2}. For trans compounds, one has molecular symmetry C_{1}, one C_{2} and nine have C_{i} symmetry. This is in agreement with Kitaigorodsky's postulate that for $C 2 / c$ molecular symmetry C_{i} is close-packed, but C_{2} limiting close-packed, i.e.

[^1]molecules with potential C_{i} symmetry will occupy such a position in the crystal structure.

Packing of cis- $\operatorname{Pt} X_{2} L_{2}$ exclusively across an inversion centre is observed in 37 compounds (21%). However, an inversion centre combined with a screw axis/glide plane dominates strongly, with 97 compounds (56%). This is in accordance with the conclusion of Brock \& Dunitz (1994) that inversion centres are especially favourable for crystal packing. A corresponding analysis of trans $-\operatorname{Pt} X_{2} L_{2}$ (Hansson et al., 2006) resulted in 55 compounds (34%) exclusively packed across an inversion centre and 94 compounds (59\%) with an inversion centre combined with a screw axis/glide plane. It is interesting to note that the space groups $P 2_{1}$ and $P 2_{1} 2_{1} 2_{1}$ represent 2% of compounds trans $-\operatorname{Pt} X_{2} L_{2}$ and 11% of the cis $-\mathrm{Pt} X_{2} L_{2}$ compounds, compared with 16% for organic molecules in general (Brock \& Dunitz, 1994), which also supports the idea that molecules with potential C_{i} symmetry will occupy such a position in the crystal structure.

3.5. Cis and trans influences in compounds cis- $\mathrm{Pt}_{2} \mathrm{Cl}_{2}$

The $\mathrm{Pt}-\mathrm{Cl}$ bond lengths as reported in the CSD have been used to study the trans and cis influence (Pidcock et al., 1966; Zumdahl \& Drago, 1968) of donor atoms belonging to groups 14,15 and 16. The error in the average $\mathrm{Pt}-\mathrm{Cl}$ bond distance, the dispersion, is calculated using (2)

$$
\begin{equation*}
s=\left[\left(\Sigma\left(\bar{d}_{\mathrm{Pt}-\mathrm{Cl}}-d_{\mathrm{Pt}-\mathrm{Cl}}\right)^{2}\right) /(n-1)\right]^{1 / 2} \tag{2}
\end{equation*}
$$

For trans $-\mathrm{PtCl}_{2} L_{2}$ complexes, with L donor atoms belonging to groups 15 and 16, the average of $\mathrm{Pt}-\mathrm{Cl}$ is 2.303 (4) and 2.298 (8) \AA, respectively, indicating that the cis influence, if existing, is less than $0.01 \AA$. A similar analysis of $c i s-\mathrm{PtCl}_{2} L_{2}$ will thus give an estimate of the trans influence, since an eventual cis influence may be neglected. Donor atoms belonging to 15 and 16 give 2.33 (3) and 2.309 (9) \AA, respectively, indicating a larger trans influence for group 15 compared with group 16. The cis complexes reported in the CSD with donor atoms N and P are so numerous, 49 and 64

Figure 6
The channels along the a axis in the triclinic polymorph. The \mathbf{b} axis is in the horizontal direction and the \mathbf{c} axis in the pseudo-vertical direction.
compounds, respectively, that it may be reasonable to discriminate between these donor atoms. Donor atoms N and P give $\mathrm{Pt}-\mathrm{Cl}$ distances of $2.30(1)$ and $2.35(2) \AA$, respectively, showing that the trans influence of N is very small, and about the same as the cis influence, whilst it is significantly larger for P.

4. Conclusion

Half-normal probability plots and r.m.s. overlays show negligible geometrical differences for the title compound, as observed in the two polymorphs and the solvate with the exception of the orientation of one of the phenyl rings in the monoclinic polymorph compared with the other solid forms. The most striking feature is an intramolecular $\mathrm{C}-\mathrm{H}-$ π (arene) interaction in all three cases.

A CSD search shows that for $c i s-\operatorname{Pt} X_{2} L_{2}$ the point group C_{1} dominates strongly, 90%, followed by $C_{2}, 10 \%$, and with one representative for C_{s}. Packing of cis- $\mathrm{PtCl}_{2}\left(\mathrm{Bz}_{2} \mathrm{~S}\right)_{2}$ exclusively across inversion centres and inversion centres combined with screw axis/glide planes is observed in 76% of the cases followed by translational symmetry only, 16%.

Structural dimers across inversion centres have been identified for the two polymorphs and the solvate, and $\pi--\pi$ stacking is found to be an important interaction as well as $\mathrm{C}-$ $\mathrm{H}--\mathrm{Cl}, \mathrm{C}-\mathrm{H}--\mathrm{S}$ and $\mathrm{C}-\mathrm{H}---\pi$ interactions, and $\mathrm{C}-\mathrm{H}--$ $\mathrm{H}-\mathrm{C}$ contacts.

Data from the CSD for cis/trans $-\mathrm{Pt} X_{2} L_{2}$ show that P has a larger trans influence than N , and that the cis influence is negligible.

Financial assistance from the Wallenberg Foundation, Crafoord Foundation, The Swedish National Research Council and The Royal Physiographic Society in Lund are gratefully acknowledged.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Albertsson, J. \& Schultheiss, P. M. (1974). Acta Cryst. A30, 854-855. Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Belsky, V. K., Zorkaya, O. N. \& Zorky, P. M. (1995). Acta Cryst. A51, 473-481.

Belsky, V. K. \& Zorkii, P. M. (1977). Acta Cryst. A33, 1004-1006.
Brandenburg, K. (2000). DIAMOND2.0. Crystal Impact, Bonn, Germany.
Braunmühl, von V., Stadler, R. \& Schollmeyer, D. (1998). Z. Kristallogr. New Cryst. Struct. 213, 417-418.
Brock, C. P. \& Dunitz, J. D. (1994). Chem. Mater. 6, 1118-1127.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389397.

Bugarcic, Z., Lövqvist, K. \& Oskarsson, Å. (1993). Acta Chem. Scand. 47, 554-559.
De Camp, W. H. (1973). Acta Cryst. A29, 148-150.
Ericson, V., Lövqvist, K., Norén, B. \& Oskarsson, Å. (1992). Acta Chem. Scand. 46, 854-860.
Hansson, C. (2006). Acta Cryst. E62, o2377-o2379.
Hansson, C. (2007). Acta Cryst. C63, m361-m363.
Hansson, C., Carlson, S., Giveen, D., Johansson, M., Yong, S. \& Oskarsson, Å. (2006). Acta Cryst. B62, 474-479.
Horn, G. W., Kumar, R., Maverick, A. W., Fronczek, F. R. \& Watkins, S. F. (1990). Acta Cryst. C46, 135-137.

Hunter, C. A. \& Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Johansson, M. H., Oskarsson, A.., Lövqvist, K., Kiriakidou, F. \& Kapoor, P. (2001). Acta Cryst. C57, 1053-1055.
Johansson, M. H., Otto, S., Roodt, A. \& Oskarsson, Å. (2000). Acta Cryst. B56, 226-233.
Kapoor, P., Kukushkin, V. Y., Lövqvist, K. \& Oskarsson, Å. (1996). J. Organomet. Chem. 517, 71-79.
Kitaigorodsky, A. I. (1973). Molecular Crystals and Molecules. New York, London: Academic Press.
Lövqvist, K. (1996). PhD Thesis. Lund University, Sweden.
Oskarsson, Å. (2007). Acta Cryst. A63, s198.
Oskarsson, A. (2008). To be published.
Oxford Diffraction (2005). Xcalibur CCD system. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Oxford Diffraction (2006). CrysAlis, Version 1.171.29. Oxford Diffraction, Abingdon, Oxfordshire, England.
Pidcock, A., Richards, R. E. \& Venanzi, L. M. (1966). J. Chem. Soc. A, pp. 1707-1710.
Pidcock, E., Motherwell, W. D. S. \& Cole, J. C. (2003). Acta Cryst. B59, 634-640.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). PLATON. University of Utrecht, The Netherlands.
Wilson, A. J. C. (1993). Acta Cryst. A49, 210-212.
Yao, J. W., Cole, J. C., Pidcock, E., Allen, F. H., Howard, J. A. K. \& Motherwell, W. D. S. (2002). Acta Cryst. B58, 640-646.
Zumdahl, S. S. \& Drago, R. S. (1968). J. Am. Chem. Soc. 90, 66696675.

[^0]: (C) 2008 International Union of Crystallography Printed in Singapore - all rights reserved

[^1]: ${ }^{1}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: RY5016). Services for accessing these data are described at the back of the journal.

